Transcendental Lattices and Supersingular Reduction Lattices of a Singular K3 Surface

نویسنده

  • ICHIRO SHIMADA
چکیده

A (smooth) K3 surface X defined over a field k of characteristic 0 is called singular if the Néron-Severi lattice NS(X) of X ⊗ k is of rank 20. Let X be a singular K3 surface defined over a number field F . For each embedding σ : F →֒ C, we denote by T (Xσ) the transcendental lattice of the complex K3 surface Xσ obtained from X by σ. For each prime ideal p of F at which X has a supersingular reduction Xp, we define L(X, p) to be the orthogonal complement of NS(X) in NS(Xp). We investigate the relation between these lattices T (Xσ) and L(X, p). As an application, we give a lower bound of the degree of a number field over which a singular K3 surface with a given transcendental lattice can be defined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcendental Lattices of Certain Singular K3 Surfaces

We present a method of Zariski-van Kampen type for the calculation of the transcendental lattice of a complex projective surface. As an application, we calculate the transcendental lattices of complex singular K3 surfaces associated with an arithmetic Zariski pair of maximizing sextics of type A10 + A9 that are defined over Q( √ 5) and are conjugate to each other by the action of Gal(Q( √ 5)/Q).

متن کامل

ar X iv : 0 80 6 . 33 11 v 2 [ m at h . A G ] 5 J un 2 00 9 ZARISKI - VAN KAMPEN METHOD AND TRANSCENDENTAL LATTICES OF CERTAIN SINGULAR K 3 SURFACES

We present a method of Zariski-van Kampen type for the calculation of the transcendental lattice of a complex projective surface. As an application, we calculate the transcendental lattices of complex singular K3 surfaces associated with an arithmetic Zariski pair of maximizing sextics of type A10 + A9 that are defined over Q( √ 5) and are conjugate to each other by the action of Gal(Q( √

متن کامل

. A G ] 2 0 Ju n 20 08 ZARISKI - VAN KAMPEN METHOD AND TRANSCENDENTAL LATTICES OF CERTAIN SINGULAR K 3 SURFACES

We present a method of Zariski-van Kampen type for the calculation of the transcendental lattice of a complex projective surface. As an application, we calculate the transcendental lattices of complex singular K3 surfaces associated with an arithmetic Zariski pair of maximizing sextics of type A10 + A9 that are defined over Q( √ 5) and are conjugate to each other by the action of Gal(Q( √

متن کامل

Transcendental Lattices of Some K3-surfaces

In a previous paper, [S2], we described six families of K3-surfaces with Picardnumber 19, and we identified surfaces with Picard-number 20. In these notes we classify some of the surfaces by computing their transcendental lattices. Moreover we show that the surfaces with Picard-number 19 are birational to a Kummer surface which is the quotient of a non-product type abelian surface by an involut...

متن کامل

2 Federica Galluzzi and Giuseppe

In this paper we show that there is a correspondence between some K3 surfaces with non-isometric transcendental lattices constructed as a twist of the transcendental lattice of the Jacobian of a generic genus 2 curve. Moreover, we show the existence of a correspondence between a general K3 surface with ρ = 17 and a Kummer surface having transcendental lattices Q-Hodge isomorphic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006